APPLICATION NOTE

Philips' BUJ100 transistor in TO-92 suits all Compact Fluorescent Lamp powers

Philips Semiconductors has developed a new generation of planar passivated, fast switching bipolar lighting transistor that breaks new ground in lighting-transistor technology. Rated at 700 V $\mathrm{V}_{\text {Сво }}, 400 \mathrm{~V} \mathrm{~V}_{\text {CEо }}$ and $1 \mathrm{~A} \mathrm{I}_{\mathrm{C}}$ (DC) and housed in the T0-92 package, the BUJ100 offers unparalleled performance in mains operated (230 V) self-oscillating half-bridge fluorescent lamp ballasts with powers exceeding 26 W . This covers all the 230 V integrated Compact Fluorescent Lamps (CFLs) used in the home.

Restrictions imposed by the TO-92 package

The limitations of conventional lighting transistors housed in TO-92 have restricted their use to miniature CFLs with powers in single figures. Typical examples are 3 W and 5 W candle bulbs. This is because the TO-92 package has such a high junction-to-ambient thermal resistance of, typically, 150 K/W that any slight increase in the transistor's power dissipation will cause a big rise in its junction temperature governed by:
$T_{j}=T_{a}+\left(P \times R_{\text {th } j-a}\right)$,
where $T_{j}=$ junction temperature, $T_{a}=$ ambient temperature, $P=$ transistor power dissipation and $R_{\text {th } j-\mathrm{a}}=$ junction-toambient thermal resistance for the transistor.

What's more, because the ambient temperature inside the CFL housing can be very high, excess transistor temperature rise can very easily lead to its destruction. For example, a transistor dissipation of 400 mW will cause a junction temperature rise of $60^{\circ} \mathrm{C}$. An ambient temperature of $100{ }^{\circ} \mathrm{C}$ is quite possible. This will result in a junction temperature of $160{ }^{\circ} \mathrm{C}$, which is above the T_{j} max of $150{ }^{\circ} \mathrm{C}$ and is likely to lead to destruction of the transistor.

The answer - Philips' new BUJ100

The arrival of the BUJ100 has now solved this problem. Its technology, free of former limitations, gives exceptional performance and remarkably low transistor temperature rise at
all domestic CFL power levels. The key to this success is the new transistor's low power dissipation.

The BUJ100 exhibits very low switching and conduction losses in electronic ballast circuits in which the base drive has been correctly optimised. The resulting low transistor temperature rise makes high ambient temperature less of a problem and brings higher power ballast circuits within the scope of the T0-92 lighting transiștor.

CFL circuit tests

The BUJ100 has been tested in various CFL circuits with input powers ranging from 10 W to 26 W . The best indicator of the transistor's efficiency is its free-air case temperature rise, so this measurement has been used for comparison. Table 1 shows the temperature rise results. Transistor power dissipation has been calculated, based on the assumption that $\mathrm{R}_{\mathrm{th} j-\mathrm{a}}=150 \mathrm{~K} / \mathrm{W}$.

TABLE 1
BUJ 100 thermal performance in CFL circuits

Input power (W)	Transistor temperature rise $\left({ }^{\circ} \mathrm{C}\right)$	Transistor power (mW)
10	11	73
13	10	67
18	14	93
26	6	40

Switching losses

Switching losses can arise at transistor switch-on and at switch-off when there is simultaneous voltage across the device and current flowing through it. In a correctly-optimised circuit, there should be no switch-on losses since the transistor's blocking voltage will have fallen to zero before its current starts to rise. This Zero-V oltage-Switching condition applies to the four circuits tested here, so switch-on waveforms are not shown.

PHILIPS

At transistor switch-off, there will always be some power dissipation as its collector current falls to zero and its collector-emitter voltage starts to rise. The amount of dissipation depends on the circuit conditions but it is also
strongly dependent on the transistor's switching performance: the faster its collector current falls to zero, the lower the area bounded by the $I_{C}-V_{C E}$ waveforms and the lower the switching loss. The shaded areas in Figs 1 to 4 indicate switching loss.

Fig. 318 W
Transistor switch-off. Frequency $=33.7 \mathrm{kHz}$,
$\mathrm{V}_{\mathrm{BE}}: 1 \mathrm{~V} / \mathrm{div}, \mathrm{I}_{\mathrm{C}}: 0.1 \mathrm{~A} / \mathrm{div}, \mathrm{V}_{\mathrm{CE}}: 100 \mathrm{~V} / \mathrm{div}$, timebase: $0.5 \mu s / d i v$

Fig. 213 W
Transistor switch-off. Frequency $=31.1 \mathrm{kHz}$,
$\mathrm{V}_{\mathrm{BE}}: 1 \mathrm{~V} / \mathrm{div}, \mathrm{I}_{\mathrm{C}}: 0.1 \mathrm{~A} / \mathrm{div}, \mathrm{V}_{\mathrm{CE}}: 100 \mathrm{~V} / \mathrm{div}$, timebase: $0.5 \mu \mathrm{~s} / \mathrm{div}$

Fig. 426 W
Transistor switch-off. Frequency $=29.5 \mathrm{kHz}$,
$\mathrm{V}_{\mathrm{BE}}: 1 \mathrm{~V} / \mathrm{div}, \mathrm{I}_{\mathrm{B}}: 0.1 \mathrm{~A} / \mathrm{div}, \mathrm{I}_{\mathrm{C}}: 0.1 \mathrm{~A} / \mathrm{div}$, $\mathrm{V}_{\mathrm{CE}}: 100 \mathrm{~V} / \mathrm{div}$, timebase: $1 \mu \mathrm{~s} / \mathrm{div}$

Conduction losses

Conduction losses occur as a result of the transistor's forward voltage drop when conducting. The transistor must be fully saturated by sufficient base drive to reduce this $\mathrm{V}_{\text {CEsat }}$ to a minimum. It is not visible on the waveforms because, at around 0.24 V , it is negligible compared with the blocking voltage of over 300 V .

Why the BUJ100 is so cool

- Fast inductive fall time t_{fi}. This is an important requirement for low switching losses in electronic ballast circuits: $\mathrm{t}=130 \mathrm{~ns} \max @ 100{ }^{\circ} \mathrm{C}$ for the BUJ100.
- Smooth turn-off. A fast and smooth fall in I_{C} is desirable to avoid high-frequency ringing that might otherwise cause additional radiated interference and power dissipation in the circuit.
- Tightly-controlled storage time $\mathbf{t}_{\mathbf{s}^{*}}$ This is important for consistent performance from lot to lot in self-oscillating circuits whose oscillating frequency is dictated partly by $\mathrm{t}_{\mathrm{s} \text {. }}$ The inductive storage time $\mathrm{t}_{\mathrm{si}}=1.4 \mu \mathrm{~s}$ max @ $100{ }^{\circ} \mathrm{C}$ for the BUJ100.
- \quad Tightly-controlled \mathbf{h}_{FE}. This is also important for consis tent and reliable circuit performance. Optimum circuit performance can be guaranteed from lot to lot without the requirement for gain band selection.
- Flat gain/current characteristic. The BUJ 100 does not suffer from the severe gain fall-off at low collector current that affects other designs. Correct circuit start-up and running is guaranteed at all power levels and under all operating conditions.
- Wide safe operating area. This exceeds the capabilities of equivalent transistors to withstand abnormal and stressful operating conditions, leading to better circuit reliability.
- Inherent avalanche ruggedness. The design and manufacturing process give the BUJ100 a degree of avalanche ruggedness so it will not automatically be destroyed by transient events that cause brief avalanche current flow. This also leads to better circuit reliability.
- The base can be overdriven. It is possible and advantageous to overdrive the BUJ100's base without incurring the penalty of dramatically increased switching losses - a universal problem with other transistor designs. The BUJ 100 maintains the quick and efficient removal of mobile charge carriers from its junction, even from a state of severe over saturation. This forgiving performance yields the following benefits:
- The lowest possible $\mathrm{V}_{\text {CEsst }}$ can be achieved by driving the base hard to give the lowest possible conduction losses without increasing switching losses.
It is not necessary to add anti-saturation components such as a Baker Clamp.
- Provided the base drive is sufficient to minimise $V_{\text {CEsat }}$ for the worst-case conditions of minimum supply voltage and maximum load current, optimum performance will be maintained over the full range of circuit operating conditions.
- It is easy to design reliable circuits with the BUJ100 that are guaranteed to work under all conditions.
- The lowest power dissipation. The BUJ100 can conduct higher current than any other TO-92 lighting transistor while keeping its own power dissipation within the capabilities of the package.
- Lower cost to the OEM. The unmatched performance of the BUJ100 enables it to replace all SOT82, SOT 32 (TO-126) and some TO-220 transistors in suitable lighting ballasts. This allows reductions in board space and cost.

Philips Semiconductors - a worldwide company

Argentina: see South America

Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,
Tel. +61 29704 8141, Fax. +61 297048139
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +431601011248, Fax. +431601011210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 17220 0733, Fax. +375 172200773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 268 9211, Fax. +359 2689102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 800234 7381, Fax. +1 8009430087
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 23197700
Colombia: see South America
Czech Republic: see Austria
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,
Tel. +45 3329 3333, Fax. +45 33293905
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9615 800, Fax. +358 961580920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,
Tel. +33 14099 6161, Fax. +33 140996427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 402353 60, Fax. +49 4023536300
Hungary: Philips Hungary Ltd., H-1119 Budapest, Fehervari ut 84/A,
Tel: +36 1382 1700, Fax: +36 13821800
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22493 8541, Fax. +91 224930966
Indonesia: PT Philips Development Corporation, Semiconductors Division, Gedung Philips, JI. Buncit Raya Kav.99-100, JAKARTA 12510,
Tel. +62 217940040 ext. 2501, Fax. +62 217940080
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 17640 000, Fax. +353 17640200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3645 0444, Fax. +972 36491007
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI), Tel. +39 039203 6838, Fax +39 0392036800
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,
TOKYO 108-8507, Tel. +81 33740 5130, Fax. +81 337405057
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2709 1412, Fax. +82 27091415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3750 5214, Fax. +60 37574880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800234 7381, Fax +9-5 8009430087
Middle East: see Italy

Netherlands: Postbus 90050,5600 PB EINDHOVEN, Bldg. VB, Tel. +314027 82785, Fax. +31402788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9849 4160, Fax. +64 98497811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 2274 8000, Fax. +4722 748341

Pakistan: see Singapore

Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2816 6380, Fax. +63 28173474
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,
Tel. +48 225710 000, Fax. +48 225710001
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW
Tel. +7 095755 6918, Fax. +7 0957556919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,
Tel. +65 350 2538, Fax. +65 2516500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,
Tel. +27 114715401 , Fax. +27 114715398
South America: Al. Vicente Pinzon, 173, 6th floor,
04547-130 SÃO PAULO, SP, Brazil,
Tel. +55 11821 2333, Fax. +55 118212382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 93301 6312, Fax. +34 933014107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 85985 2000, Fax. +46 859852745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 14882741 Fax. +41 14883263
Taiwan: Philips Semiconductors, 5F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 22134 2451, Fax. +886 221342874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 60/14 MOO 11, Bangna Trad Road KM. 3, Bagna, BANGKOK 10260, Tel. +66 2361 7910, Fax. +66 23983447
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 2881260 Umraniye, ISTANBUL, Tel. +90 216522 1500, Fax. +90 2165221813
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44264 2776, Fax. +380 442680461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 208730 5000, Fax. +44 2087548421 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800234 7381, Fax. +1 8009430087
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 113341 299, Fax.+381 113342553

For all other countries apply to: Philips Semiconductors,
Internet: http://www.semiconductors.philips.com
Marketing Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN,
The Netherlands, Fax. +31 402724825

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.
Printed in The Netherlands

PHILIPS

